D.12 Public Services and Utilities

This section addresses the Proposed Project and alternatives as they would affect public services and utilities. Section D.12.1 provides a description of the environmental setting. The applicable land services and utilities plans, regulations, and requirements are introduced in Section D.12.2. An analysis of the Proposed Project impacts is in Section D.12.3, and the public service and utility impacts related to the Project alternatives are in Sections D.12.4 through D.12.6.

D.12.1 Environmental Setting

D.12.1.1 Public Services

The Liberty XXIII Renewable Energy Power Plant Project and the associated transportation route from Interstate 10 (I-10) to the facility would be located entirely within the City of Banning. The Proposed Project would utilize the City’s municipal public services as described below:

- Fire Protection – Riverside County Fire Department. Station Serving the City of Banning - Station 89 (172 North Murray Road);
- Police Protection – City of Banning Police Department. Station Serving the City of Banning - Headquarters (321 West Ramsey Street);
- Hospitals – San Gorgonio Memorial Hospital (600 North Highland Springs Avenue); and
- Schools - Banning Unified School District – Headquarters (161 West Williams Street).

D.12.1.2 Utilities and Solid Waste Facilities

Utility and service system facilities associated with electricity, domestic (potable) water, stormwater, solid waste, communications, and natural gas are typically provided and maintained by a variety of local purveyors, including cities, counties, special districts, water agencies, and private companies. Utilities such as domestic water, wastewater and stormwater sewers, and natural gas are usually transmitted via underground pipelines or conduits. Electricity and telecommunication services can also be installed underground or overhead on utility poles. The vast majority of the urban utility and public service infrastructure exists within public rights-of-way (ROWs). The Proposed Project would utilize, as well as provide electricity, for the following utilities:

- Natural Gas – Southern California Gas;
- Electricity – Southern California Public Power Authority, Southern California Edison;
- Water – City of Banning Public Works and Utilities Department;
- Waste Water – City of Banning Public Works Waste Water Division;
- Telecommunications – Verizon; and
- Solid Waste (Landfills) – Badlands Sanitary Landfill and Lamb Canyon Sanitary Landfill.

Sanitary Landfills

Sanitary landfills (Class III) are facilities that accept typical municipal solid waste as well as other wastes high in organic materials. Unclassified landfills accept only inert waste that is chemically and physically stable and does not undergo decomposition, including soil, concrete, asphalt, and other construction and demolition debris, as defined by California Code of Regulations, Title 23, Section 2554. As unclassified landfills typically have no daily disposal limits, the quantity of construction-related materials transported to these landfills would be minor relative to the daily volumes handled by the facility and would not substantially affect their remaining capacities. The Badlands Sanitary Landfill has a total capacity of 30,386,332 cubic yards with 21,866,092 cubic yards remaining (72 percent of its total) and has a maximum throughput of 4,000 tons of waste per day.
The Lamb Canyon Sanitary Landfill has a total capacity of 34,292,000 cubic yards with 20,908,171 cubic yards remaining (61 percent of its total) and has a maximum throughput of 3,000 tons of waste per day.

Water Supply

The City of Banning draws water from four main sources: groundwater, surface water, recycled water, and imported water. Table D.12-1, below, shows the water current (Year 2005) and projected water supplies for the City of Banning through the year 2030. The groundwater basins serving the City are naturally recharged through the percolation of runoff, direct precipitation, subsurface inflow, and artificial recharge. Surface water from the Whitewater River flows into a tributary to the San Gorgonio River, where a portion of that water is removed by Banning Heights Water Company. The City of Banning Wastewater Treatment Plant, located in the southeast section of the City adjacent to the Proposed Project, has the capacity to treat 3.6 million gallons per day (mgd) of wastewater to secondary standards. Currently, recycled water supplies as shown in Table D.12-1 are equal to projected irrigation demand. However, recycled water production will actually exceed demand and the City plans to increase the capacity of recycled water production up to 7,394 acre-ft/yr. By 2030, the City is estimated to have approximately 7,500 acre-ft/yr of surplus recycled water. Additionally, the City of Banning is eligible to receive imported water from the State Water Project (SWP) via the San Gorgonio Pass Water Agency and other nearby water districts (Banning, 2005).

<table>
<thead>
<tr>
<th>Table D.12-1. City of Banning Current and Projected Water Supplies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source</td>
</tr>
<tr>
<td>Banning Canyon/Banning Bench Storage Unit</td>
</tr>
<tr>
<td>Beaumont Storage Unit</td>
</tr>
<tr>
<td>Cabazon Storage Unit</td>
</tr>
<tr>
<td>East Banning Storage Unit</td>
</tr>
<tr>
<td>West Banning Storage Unit</td>
</tr>
<tr>
<td>Recycled Water Use</td>
</tr>
<tr>
<td>Return Flows from Irrigation</td>
</tr>
<tr>
<td>SWP Table A Entitlement</td>
</tr>
<tr>
<td>SWP Additional Table A</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

Source: Banning, 2005

Waste Water

The City of Banning Wastewater Treatment Plant is located in the southeast section of the City adjacent to the Proposed Project and has a secondary treatment capacity of 3.6 mgd, but has a designed capacity of 7.8 mgd. As of January 2005, the plant receives an average of 2.3 to 2.4 mgd. Sewer services are provided to the entire city limits and to the unincorporated areas of Riverside County that surround the southeast section of the City. Collected wastewater is transported by sewer main lines that are 8, 10, 15, and 18 inches in diameter, which are connected to trunk lines. The trunk lines, ranging from 24 to 30 inches in diameter, convey wastewater to the plant. Wastewater received by the plant undergoes treatment consisting of screening, grit removal, primary clarification, trickling filters, and secondary clarifiers. Treated effluent is discharged to percolation ponds and subsequently recharges the East Banning storage unit.
D.12.2 Applicable Regulations, Plans, and Standards

The following section presents the State, regional, and local utility and service system regulations, plans, and standards that are directly applicable to the Proposed Project and alternatives.

D.12.2.1 State

The responsibilities of utility operators and other excavators working in the vicinity of utilities are detailed in Section 1, Chapter 3.1 “Protection of Underground Infrastructure”, Article 2 of California Code 4216. This law requires that an excavator must contact a regional notification center at least two days prior to excavation of any subsurface installations. The notification center for southern California is Underground Service Alert (also known as “DigAlert”). Anyone seeking to begin an excavation project must call Underground Service Alert’s toll-free hotline. Underground Service Alert, in turn, will notify the utilities that may have buried lines within 1,000 feet of the excavation. Representatives of the utilities are required to mark the specific location of their facilities within the work area prior to the start of excavation. The excavator is required to probe and expose the underground facilities by hand prior to using power equipment.

California Integrated Waste Management Board Solid Waste Policies, Plans, and Regulations. The Integrated Waste Management Act of 1989 (PRC 40050 et. seq. or Assembly Bill (AB 939, codified in PRC 40000), administered by the California Integrated Waste Management Board (CIWMB), requires all local and county governments to adopt a Source Reduction and Recycling Element to identify means of reducing the amount of solid waste sent to landfills. This law set reduction targets at 25 percent by the year 1995 and 50 percent by the year 2000. To assist local jurisdictions in achieving these targets, the California Solid Waste Reuse and Recycling Access Act of 1991 (SWRR) requires all new developments to include adequate, accessible, and convenient areas for collecting and loading recyclable and green waste materials. The Proposed Project would use source-separated green waste materials as fuel for the production of renewable energy.

D.12.2.3 Local

The Riverside County and City of Banning General Plans have a variety of goals and policies related to utilities and public service systems and generally describe the municipalities’ provision and management of fire and police protection services and activities, water and sewer systems, and the visual and safety aspects of the location of utilities. The location, safety, and visual issues are discussed in Section D.3, Land Use, Section D.7, Hazards and Hazardous Materials, Section D.11, Public Health, and Section D.12, Visual Resources, respectively. While the provision of fire and police protection services is described within the plans for local jurisdictions and general goals and policies are laid out for these services, none of the plans directly address the public service issues associated with this Project in particular.

D.12.3 Environmental Impacts and Mitigation Measures for the Proposed Project

D.12.3.1 Criteria for Determining Significance

Significant impacts to public services and utilities would occur under the following conditions:

- The Project would disrupt the existing utility systems or would cause a co-location accident through the crossing or shared location with another utility line;
- The Project would require the need for new or physically altered public service facilities in order to maintain acceptable service ratios, response times, or other performance objectives; or
• The Project would require water, generate solid waste or wastewater that exceeds the ability of existing facilities to accommodate the new capacities, or generate a need for public services requiring the expansion of existing facilities.

D.12.3.2 Impact Analysis

Impact PSA-1: Project construction or operation would disrupt existing or planned utility systems (Class III)

The Proposed Project would require excavation and grading for the construction of the power plant facilities and surrounding biomass storage area and would require drilling and excavation for installation of the 34.5 kV subtransmission line wood poles. New sewer and water pipelines would be constructed within existing roadways. Co-located utilities such as natural gas or water pipelines already exist within the road right-of-way (ROW).

As described above, Liberty XXIII Biofuels Power LLC is required by State law to contact Underground Service Alert and manually probe for existing buried utilities at the Proposed Project site and along the subtransmission line ROW prior to any powered-equipment drilling or excavation. After probing at the site and along the subtransmission line corridor for existing utilities, grading, excavation, and placement of structures and poles foundations would be determined so that they would not conflict with other co-located utilities. Due to the location of the subtransmission line and Proposed Project site at the terminus of existing City utility systems, there is little potential for accidental service interruptions to occur during construction or operation. Therefore, less-than-significant (Class III) impacts to utility systems would occur.

Impact PSA-2: Project construction or operation would exceed the capacity for existing public service facilities (Class III)

Fire protection or other emergency service providers could be required at a Project construction site in the event of a construction accident. The likelihood of an accident requiring such a response would be low. Overall, project construction would not occur in a dangerous area; the biggest potential hazard would be fire associated with the dry habitat in the area of the project site and along the overhead subtransmission line route. However, the watering associated with dust suppression would make the potential for accidental ignition low. Therefore, the service capacities of local fire departments in areas where accidents could occur would not be affected. Since the potential for a construction accident is low and the respective fire departments are prepared to respond to accidents, this would represent an adverse, but less-than-significant impact (Class III).

As discussed in Section D.13 (Effects Found Not to Be Significant), neither construction nor operation of the Proposed Project is expected to result in an increase in the local population. Construction personnel are not expected to relocate to the area for construction of the Proposed Project, and no new workers are required for operation of the project. Therefore, the Proposed Project would not increase any demands on schools or lower the long-term level of service for fire protection or police protection. Less-than-significant (Class III) impacts to schools, fire, and police departments would occur.

Impact PSA-3: Project construction or operation would exceed the capacity for existing utility systems (Class III)

Construction

Construction of the Proposed Project would require water on a daily basis at construction sites for dust suppression, and would generate waste largely in the form of soil, debris and waste that currently litters the Proposed Project site, packing crates, spare bolts, and other construction debris would be hauled offsite for
recycling or disposal at local landfills. Soil from drilling or excavation for new tower foundations would be screened and separated for use as backfill materials at the site of origin to the maximum extent possible. Spoils unsuitable for backfill use would be disposed of at appropriate disposal sites.

The amount of water used per day for dust suppression would depend on the length of access roads used, weather conditions, road surface conditions, and other site-specific conditions. It is not expected that significant amounts of water would be used for foundation construction or other activities. Water required for consumption by construction crews would be minimal. Water use during Proposed Project construction is assumed to be a minute fraction of the total water supply for the jurisdictions affected by the Proposed Project and would not change the ability of the water suppliers identified in Table D.12-2 to serve Proposed Project area demands. Therefore, the water demand for construction of the Proposed Project would be less than significant (Class III) on the regional water supply, and no mitigation is recommended.

Construction would generate a minute quantity of waste water relative to the capacity of the City of Banning Municipal Waste Water Treatment Plant. Portable toilets brought to staging areas for construction crews would be emptied into septic tanks or municipal sewage systems. No part of construction of the Proposed Project would generate wastewater in amounts exceeding the capacity of the waste water treatment plan. Impacts due to demands on wastewater facilities would be less than significant (Class III).

Similarly, other than a small quantity of general construction waste (packing crates, construction debris, etc.) generated over the course of construction of the Proposed Project, the largest volume of waste generated during construction would be the removal of the tires, household appliances, furniture, mattresses, and other household waste that had been dumped at the Proposed Project site in the past. While this could represent a large amount of waste during the short period it is removed, once this debris is removed it would not continue to be a source generating additional waste. Consequently, the generation of construction-related waste would be small relative to the capacities of local landfills. Any impacts on solid waste facilities would be less than significant (Class III).

Operation

As described in Section B.2.3.4, Water Supply, of the Description of the Proposed Project, operation of the Proposed Project would require approximately 2,470 acre-feet/yr of reclaimed water and 40 gpm of potable water for the sanitary needs of the Proposed Project’s employees and the production of demineralized high purity water. The 40 gpm of potable water would be a minute fraction of the total potable water supply for the City of Banning and would not place any new demands on the water supply. While the 2,470 acre-feet/yr of reclaimed water required for plant operation is a substantial quantity, the City of Banning has demonstrated that the City’s waste water treatment plant has the capacity to provide this quantity to the Proposed Project, even though the plant currently only produces water to meet the needs of existing irrigation. With recent and planned expansion of the Municipal Water Quality Treatment Plant’s capabilities, reclaimed water use by the Proposed Project would represent a substantial draw on the City’s reclaimed water supply, but would be within the capacity of the City’s planned reclaimed water expansions. An on-site well would also be used to supplement reclaim water flow. Additionally, most of this reclaimed water is returned to the waste water treatment plant in a similar condition to which it was delivered. Any operational impacts on the City’s or region’s water supply would be adverse, but would be less than significant (Class III).

The Proposed Project would generate large quantities of waste in the form of fly ash as a byproduct of the power generation process and small quantities of other wastes generated in the day-to-day operation of the plant facilities. The Proposed Project would produce approximately 109,500 tons of fly ash annually, containing limestone, quick lime, and powdered activated carbon, over 300 tons of ash per day. If the ash
were to be disposed of at local landfills, the quantity generated would be substantially greater than the landfills’ maximum throughput. As the ash would be hauled away and sold as a replacement for portland cement in concrete production, the entire quantity would be recycled. The other wastes generated in the day-to-day operation of the plant would be minor in comparison to the capacities of local landfills. Consequently, any impacts to solid waste facilities would be less than significant (Class III).

The green waste utilized by the Proposed Project as biomass fuel would be provided, in part, by municipalities in the region around the City of Banning. The CIWMB has stated in a December 2007 guidance document, *How Conversion Technologies Fit Current Board Regulatory Structure*, the following:

> A jurisdiction’s disposal tonnage is the amount of solid waste it has sent to a permitted (SWFP) disposal facility or transformation facility. Material sent to a facility that is not required to obtain a SWFP, or one that needs a SWFP but is not classified as a disposal facility or as a transformation facility, does not “count” as disposal. If that material was originally part of the jurisdiction’s base year disposal tonnage and is now being sent elsewhere, it would consequently be treated as diversion since it would not be counted as disposal.

The CIWMB also states that a jurisdiction that sends solid waste to a transformation facility that was permitted prior to January 1, 1995 and that requires a SWFP may count that waste as diversion for up to 10 percent of its 50 percent requirement. Solid waste sent to a transformation facility permitted after January 1, 1995 and requiring a SWFP would be counted wholly as disposal (CIWMB, 2007b).

The CIWMB has suggested that they would consider the project as Transfer/Processing under its current regulatory framework and would be regulated as such through a Solid Waste Facilities Permit. Transfer/Processing is not considered disposal and biomass used as fuel would be eligible for consideration as diversion credits.

The biomass and biosolids used by the Proposed Project as fuel would be source separated feedstocks. While some of the biosolids (sewage sludge) could be considered putrescible, less than one percent would be putrescible. Section D.2, Air Quality, further addresses odor control and prevention and concludes that the containment, enclosure, and design measures would prevent odor from becoming a nuisance. Approximately 0.28 percent of the residual solid waste from the facility would be sent to disposal, while the ash byproduct of the gasification process would be hauled away for uses as a replacement for portland cement. Consequently, the Proposed Project would qualify for an exclusion from a SWFP under the 3-Part Test (CIWMB, 2008).

Because the Proposed Project facilities would be considered a Transfer/Processing facility jurisdictions sending green waste to the Proposed Project would count their material as diversion towards their 50 percent target under the 1989 Integrated Waste Management Act rather than disposal. As such, the Proposed Project would assist the City of Banning, as well as other nearby jurisdictions providing green waste for project operation, in achieving the goals set forth in the 1989 Integrated Waste Management Act. This would be considered a benefit as it would reduce the distance and cost of diversion activities and provide an overall net increase in the capacity of facilities to accept green waste (Class IV).

The Proposed Project would generate approximately 1,960 acre-feet of waste water per year (1.7 mgd), which would be conveyed to the adjacent City of Banning waste water treatment plant for processing. However, as this water would be returned at a similar quality to which it was delivered to the Proposed Project, the amount of waste water to be processed by the waste water treatment plant would be within the overall capacity of the planned expansion of the plant’s capabilities, and any impacts on the plant as a result of Proposed Project operation would be adverse, but less than significant (Class III).
The Charles Street Truck Route Alternative would provide a different route for trucks delivering biofuel and removing ash. Along this Alternative, instead of turning east on Westward Avenue, trucks would continue on Hathaway Street to Charles Street, where they would turn east and follow Charles Street to the Liberty XXIII Biofuels Power LLC facility. All other components of construction and operation of the Liberty XXIII Biofuels Power LLC facility would remain the same as described for the Proposed Project.

D.12.4.1 Alternative 1 - Environmental Setting

As the Charles Street Truck Route Alternative would have similar truck travel routes as the Proposed Project, and no other components of construction or operation of the Liberty XXIII Biofuels Power LLC facility would change as compared to the Proposed Project, the environmental settings for public services and utilities would be identical to that described above in Section D.12.1 for the Proposed Project.

D.12.4.2 Alternative 1 - Environmental Impacts and Mitigation Measures

Impact PSA-1: Project construction or operation would disrupt existing or planned utility systems (Class III)

As Alternative 1 would differ from the Proposed Project only in the transportation route for tractor-trailers servicing the facility during operation, this alternative would be identical to the Proposed Project. Alternative 1 would require excavation and grading for the construction of the power plant facilities and surrounding biomass storage area and would require drilling and excavation for installation of the 34.5 kV subtransmission line wood poles. New sewer and water pipelines would be constructed within existing roadways. Co-located utilities such as natural gas or water pipelines already exist within the road right-of-way (ROW). As described above, Liberty XXIII Biofuels Power LLC is required by State law to contact Underground Service Alert and manually probe for existing buried utilities at the facility site and along the subtransmission line ROW prior to any powered-equipment drilling or excavation. Due to the location of the subtransmission line and facility site at the terminus of existing City utility systems, there is little potential for accidental service interruptions to occur during construction or operation. Therefore, less-than-significant (Class III) impacts to utility systems would occur.

Impact PSA-2: Project construction or operation would exceed the capacity for existing public service facilities (Class III)

As Alternative 1 would differ from the Proposed Project only in the transportation route for tractor-trailers servicing the facility during operation, this alternative would be identical to the Proposed Project. Fire protection or other emergency service providers could be required at a project construction site in the event of a construction accident, although the likelihood of an accident requiring such a response would be low. Since the potential for a construction accident is low and the respective fire departments are prepared to respond to accidents, this would represent an adverse, but less-than-significant impact (Class III).

As discussed in Section D.13 (Effects Found Not to Be Significant), neither construction nor operation is expected to result in an increase in the local population. Construction personnel are not expected to relocate to the area for construction of Alternative 1, and no new workers are required for operation of the project. Therefore, Alternative 1 would not increase any demands on schools or lower the long-term level of service for fire protection or police protection. Less-than-significant (Class III) impacts to schools, fire, and police departments would occur.
Impact PSA-3: Project construction or operation would exceed the capacity for existing utility systems (Class III)

Alternative 1 would differ from the Proposed Project only in the transportation route for tractor-trailers servicing the facility during operation. Consequently, this alternative would be identical to the Proposed Project.

Construction of Alternative 1 would require water on a daily basis at construction sites for dust suppression, and would generate waste largely in the form of soil, debris and waste that currently litters the project site, packing crates, spare bolts, and other construction debris would be hauled offsite for recycling or disposal at local landfills. Water use during construction is assumed to be a minute fraction of the total water supply for the jurisdictions affected by the project and would not change the ability of the water suppliers identified in Table D.12-2 to serve area demands. Therefore, the water demand for construction would be less than significant (Class III) on the regional water supply, and no mitigation is recommended. No part of construction would generate wastewater in amounts exceeding the capacity of the waste water treatment plan. Impacts due to demands on wastewater facilities would be less than significant (Class III). Similarly, other than a small quantity of general construction waste (packing crates, construction debris, etc.) generated over the course of construction, the largest volume of waste generated during construction would be the removal of the tires, household appliances, furniture, mattresses, and other household waste that had been dumped at the project site in the past. This generation of construction-related waste would be small relative to the capacities of local landfills. Any impacts on solid waste facilities would be less than significant (Class III).

As described in Section B.2.3.4, Water Supply, of the Description of the Proposed Project, operation of the Alternative 1 would require approximately 2,470 acre-feet/yr of reclaimed water and 40 gpm of potable water for the sanitary needs of the facility’s employees and the production of demineralized high purity water. The 40 gpm of potable water would be a minute fraction of the total potable water supply for the City of Banning and would not place any new demands on the water supply. While reclaimed water use by Alternative 1 would represent a substantial draw on the City’s reclaimed water supply, this would be within the capacity of the City’s planned reclaimed water expansions. Any operational impacts on the City’s or region’s water supply would be adverse, but would be less than significant (Class III).

Alternative 1 would generate approximately 109,500 tons of fly ash annually (over 300 tons of ash per day), containing limestone, quick lime, and powdered activated carbon. As the ash would be hauled away and sold as a replacement for portland cement in concrete production, the entire quantity would be recycled. The other wastes generated in the day-to-day operation of the plant would be minor in comparison to the capacities of local landfills. Consequently, any impacts to solid waste facilities would be less than significant (Class III).

Because the Alternative 1 facilities would be classified as Transfer/Processing, jurisdictions sending green waste to the facility would count their material as diversion towards their 50 percent target under the 1989 Integrated Waste Management Act rather than disposal. As such, Alternative 1 would assist the City of Banning, as well as other nearby jurisdictions providing green waste for project operation, in achieving the goals set forth in the 1989 Integrated Waste Management Act. This would be considered a benefit as it would reduce the distance and cost of diversion activities and provide an overall net increase in the capacity of facilities to accept green waste (Class IV).

Alternative 1 would generate approximately 1,960 acre-feet of waste water per year (1.7 mgd), which would be conveyed to the adjacent City of Banning Municipal waste water treatment plant for processing, most of which would be returned as reclaim water of the same quality as it was delivered to the plant. As this would be
within the overall capacity of the planned expansion of the plant’s capabilities, any impacts on the plant as a result of facility operation would be adverse, but less than significant (Class III).

D.12.5 Alternative 2

Under this alternative, operational truck traffic would be restricted to occur only outside of peak traffic hours. Construction of the Alternative 2 would be the same as described for the Proposed Project. With the exception of the times that operational truck traffic would be restricted, operation and maintenance of Alternative 2 would be the same as the Proposed Project.

D.12.5.1 Alternative 2 - Environmental Setting

As the Avoid Peak Hours Traffic Alternative would have identical truck travel routes as the Proposed Project, and no other components of construction or operation of the Liberty XXIII Biofuels Power LLC facility would change as compared to the Proposed Project, the environmental settings for public services and utilities would be identical to that described above in Section D.12.1 for the Proposed Project.

D.12.5.2 Alternative 2 - Environmental Impacts and Mitigation Measures

Impact PSA-1: Project construction or operation would disrupt existing or planned utility systems (Class III)

As Alternative 2 would differ from the Proposed Project only in the timing of tractor-trailers servicing the facility during operation, this alternative would be identical to the Proposed Project. Alternative 2 would require excavation and grading for the construction of the power plant facilities and surrounding biomass storage area and would require drilling and excavation for installation of the 34.5 kV subtransmission line wood poles. New sewer and water pipelines would be constructed within existing roadways. Co-located utilities such as natural gas or water pipelines already exist within the road right-of-way (ROW). As described above, Liberty XXIII Biofuels Power LLC is required by State law to contact Underground Service Alert and manually probe for existing buried utilities at the facility site and along the subtransmission line ROW prior to any powered-equipment drilling or excavation. Due to the location of the subtransmission line and facility site at the terminus of existing City utility systems, there is little potential for accidental service interruptions to occur during construction or operation. Therefore, less-than-significant (Class III) impacts to utility systems would occur.

Impact PSA-2: Project construction or operation would exceed the capacity for existing public service facilities (Class III)

As Alternative 2 would differ from the Proposed Project only in the timing of tractor-trailers servicing the facility during operation, this alternative would be identical to the Proposed Project. Fire protection or other emergency service providers could be required at a project construction site in the event of a construction accident, although the likelihood of an accident requiring such a response would be low. Since the potential for a construction accident is low and the respective fire departments are prepared to respond to accidents, this would represent an adverse, but less-than-significant impact (Class III).

As discussed in Section D.13 (Effects Found Not to Be Significant), neither construction nor operation is expected to result in an increase in the local population. Construction personnel are not expected to relocate to the area for construction of Alternative 2, and no new workers are required for operation of the project. Therefore, Alternative 2 would not increase any demands on schools or lower the long-term level of service.
for fire protection or police protection. Less-than-significant (Class III) impacts to schools, fire, and police departments would occur.

Impact PSA-3: Project construction or operation would exceed the capacity for existing utility systems (Class III)

Alternative 2 would differ from the Proposed Project only in the timing of tractor-trailers servicing the facility during operation. Consequently, this alternative would be identical to the Proposed Project.

Construction of Alternative 2 would require water on a daily basis at construction sites for dust suppression, and would generate waste largely in the form of soil, debris and waste that currently litters the project site, packing crates, spare bolts, and other construction debris would be hauled offsite for recycling or disposal at local landfills. Water use during construction is assumed to be a minute fraction of the total water supply for the jurisdictions affected by the project and would not change the ability of the water suppliers identified in Table D.12-2 to serve area demands. Therefore, the water demand for construction would be less than significant (Class III) on the regional water supply, and no mitigation is recommended. No part of construction would generate wastewater in amounts exceeding the capacity of the wastewater treatment plan. Impacts due to demands on wastewater facilities would be less than significant (Class III). Similarly, other than a small quantity of general construction waste (packing crates, construction debris, etc.) generated over the course of construction, the largest volume of waste generated during construction would be the removal of the tires, household appliances, furniture, mattresses, and other household waste that had been dumped at the project site in the past. This generation of construction-related waste would be small relative to the capacities of local landfills. Any impacts on solid waste facilities would be less than significant (Class III).

As described in Section B.2.3.4, Water Supply, of the Description of the Proposed Project, operation of the Alternative 2 would require approximately 2,470 acre-feet/yr of reclaimed water and 40 gpm of potable water for the sanitary needs of the facility’s employees and the production of demineralized high purity water. The 40 gpm of potable water would be a minute fraction of the total potable water supply for the City of Banning and would not place any new demands on the water supply. While reclaimed water use by Alternative 2 would represent a substantial draw on the City’s reclaimed water supply, this would be within the capacity of the City’s planned reclaimed water expansions. Any operational impacts on the City’s or region’s water supply would be adverse, but would be less than significant (Class III).

Alternative 2 would generate approximately 109,500 tons of fly ash annually (over 300 tons of ash per day), containing limestone, quick lime, and powdered activated carbon. As the ash would be hauled away and sold as a replacement for portland cement in concrete production, the entire quantity would be recycled. The other wastes generated in the day-to-day operation of the plant would be minor in comparison to the capacities of local landfills. Consequently, any impacts to solid waste facilities would be less than significant (Class III).

Because the Alternative 2 facilities would be classified as Transfer/Processing, jurisdictions sending green waste to the facility would count their material as diversion towards their 50 percent target under the 1989 Integrated Waste Management Act rather than disposal. As such, Alternative 2 would assist the City of Banning, as well as other nearby jurisdictions providing green waste for project operation, in achieving the goals set forth in the 1989 Integrated Waste Management Act. This would be considered a benefit as it would reduce the distance and cost of diversion activities and provide an overall net increase in the capacity of facilities to accept green waste (Class IV).

Alternative 2 would generate approximately 1,960 acre-feet of waste water per year (1.7 mgd), which would be conveyed to the adjacent City of Banning Municipal Waste Water Treatment Plant for processing, most of
which would be returned as reclaim water of the same quality as it was delivered to the plant. As this would be within the overall capacity of the planned expansion of the plant’s capabilities, any impacts on the plant as a result of facility operation would be adverse, but less than significant (Class III).

D.12.6 No Project Alternative

Under the No Project Alternative, public service and utilities impacts associated with the Proposed Project would not occur. In addition, this alternative would not involve the introduction of new traffic to the site or operational truck routes as a result of Project operations. As such, no new demands would be placed on utilities or public services and no potential for co-location accidents or accidental outages would occur. However, under the No Project Alternative, the benefit of the additional capacity provided a new facility to accept green waste would be lost. While no significant public service and utilities impacts are associated with the Proposed Project, the No Project Alternative would have less impact on public services and utilities compared to the Proposed Project.

D.12.7 Mitigation Monitoring, Compliance, and Reporting Table

Table D.12-2 on the following page presents the mitigation monitoring recommendations for Public Services and Utilities.
Table D.12-2. Mitigation Monitoring Program - Public Services and Utilities

<table>
<thead>
<tr>
<th>Impact</th>
<th>Mitigation Measure</th>
<th>Location</th>
<th>Monitoring / Reporting Action</th>
<th>Effectiveness Criteria</th>
<th>Responsible Agency</th>
<th>Timing</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSA-1: Project construction or operation would disrupt existing or planned utility systems (Class III)</td>
<td>No mitigation required</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>PSA-2: Project construction or operation would exceed the capacity for existing public service facilities (Class III)</td>
<td>No mitigation required</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>PSA-3: Project construction or operation would exceed the capacity for existing utility systems (Class III)</td>
<td>No mitigation required</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
D.12.8 References

Banning. 2007. City of Banning information website. [online]:

Banning USD. 2007. Banning Unified School District, information website. [online]:
www.banning.k12.ca.us/, accessed August 15.

BPD (Banning Police Department). 2007. Banning Police Department information website. [online]:

Management Board, Solid Waste Information System (SWIS) Database information website.

December.

_____. 2008. Personal Communication between Fernando Berton, Manager, CIWMB, and Wilson
Nolan, CEO, Liberty XXIII Biofuels Power LLC March, 26.

Water Quality Control Board information website. [online]: http://www.swrcb.ca.gov, accessed
August 15.